If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+50x-24=0
a = 4; b = 50; c = -24;
Δ = b2-4ac
Δ = 502-4·4·(-24)
Δ = 2884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2884}=\sqrt{4*721}=\sqrt{4}*\sqrt{721}=2\sqrt{721}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{721}}{2*4}=\frac{-50-2\sqrt{721}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{721}}{2*4}=\frac{-50+2\sqrt{721}}{8} $
| 3m^2=-16m+21 | | 36=6t+18 | | -22+25p=228 | | x–5.1=–7.6 | | 36-7p=-7 | | 2s+5=6s-95 | | 10a^2-10a-23=0 | | 58=3u-38 | | 16x-116=196-8× | | 211=164-v | | (9x+8)+107=180 | | 7x-6=-32 | | 18x=892.8 | | 8+8k=5(4+2k) | | 22+4v=2(8–v) | | 3(u-3)—4u=11 | | 4x^2-90x+50=1024 | | 4x^2-90x+1024=0 | | m-5/1/4=9/1/4 | | -32+8n=5(2n-8) | | -18+2p=6 | | 8(-2m-6)+3=-93 | | -18+2p=36 | | 36=u=6(7-u)+u | | -1+2p=3-6(8-4p) | | 0.40(j+40)=-4 | | x-1.3=1.7 | | 39-8n=n+3(n+5) | | x-2.1=0.9 | | 9-m÷4=4 | | -4x+(-8)=20 | | 3.75=n-541 |